Likelihood approximation by numerical integration on sparse grids
Florian Heiss and
Viktor Winschel
Journal of Econometrics, 2008, vol. 144, issue 1, 62-80
Abstract:
The calculation of likelihood functions of many econometric models requires the evaluation of integrals without analytical solutions. Approaches for extending Gaussian quadrature to multiple dimensions discussed in the literature are either very specific or suffer from exponentially rising computational costs in the number of dimensions. We propose an extension that is very general and easily implemented, and does not suffer from the curse of dimensionality. Monte Carlo experiments for the mixed logit model indicate the superior performance of the proposed method over simulation techniques.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (65)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4076(07)00255-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:144:y:2008:i:1:p:62-80
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().