Evolution of forecast disagreement in a Bayesian learning model
Kajal Lahiri and
Xuguang Simon Sheng
Journal of Econometrics, 2008, vol. 144, issue 2, 325-340
Abstract:
We estimate a Bayesian learning model with heterogeneity aimed at explaining expert forecast disagreement and its evolution over horizons. Disagreement is postulated to have three components due to differences in: (i) the initial prior beliefs, (ii) the weights attached on priors, and (iii) interpreting public information. The fixed-target, multi-horizon, cross-country feature of the panel data allows us to estimate the relative importance of each component precisely. The first component explains nearly all to 30% of forecast disagreement as the horizon decreases from 24 months to 1 month. This finding firmly establishes the role of initial prior beliefs in generating expectation stickiness. We find the second component to have barely any effect on the evolution of forecast disagreement among experts. The importance of the third component increases from almost nothing to 70% as the horizon gets shorter via its interaction with the quality of the incoming news. We propose a new test of forecast efficiency in the context of Bayesian information processing and find significant heterogeneity in the nature of inefficiency across horizons and countries.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (143)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4076(08)00021-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:144:y:2008:i:2:p:325-340
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().