Inference in panel data models under attrition caused by unobservables
Debopam Bhattacharya
Journal of Econometrics, 2008, vol. 144, issue 2, 430-446
Abstract:
This paper concerns identification and estimation of a finite-dimensional parameter in a panel data-model under nonignorable sample attrition. Attrition can depend on second period variables which are unobserved for the attritors but an independent refreshment sample from the marginal distribution of the second period values is available. This paper shows that under a quasi-separability assumption, the model implies a set of conditional moment restrictions where the moments contain the attrition function as an unknown parameter. This formulation leads to (i) a simple proof of identification under strictly weaker conditions than those in the existing literature and, more importantly, (ii) a sieve-based root-n consistent estimate of the finite-dimensional parameter of interest. These methods are applicable to both linear and nonlinear panel data models with endogenous attrition and analogous methods are applicable to situations of endogenously missing data in a single cross-section. The theory is illustrated with a simulation exercise, using Current Population Survey data where a panel structure is introduced by the rotation group feature of the sampling process.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4076(08)00038-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:144:y:2008:i:2:p:430-446
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().