Least-squares forecast averaging
Bruce Hansen ()
Journal of Econometrics, 2008, vol. 146, issue 2, 342-350
Abstract:
This paper proposes forecast combination based on the method of Mallows Model Averaging (MMA). The method selects forecast weights by minimizing a Mallows criterion. This criterion is an asymptotically unbiased estimate of both the in-sample mean-squared error (MSE) and the out-of-sample one-step-ahead mean-squared forecast error (MSFE). Furthermore, the MMA weights are asymptotically mean-square optimal in the absence of time-series dependence. We show how to compute MMA weights in forecasting settings, and investigate the performance of the method in simple but illustrative simulation environments. We find that the MMA forecasts have low MSFE and have much lower maximum regret than other feasible forecasting methods, including equal weighting, BIC selection, weighted BIC, AIC selection, weighted AIC, Bates-Granger combination, predictive least squares, and Granger-Ramanathan combination.
Keywords: Mallows; AIC; BIC; BMA; Forecast; combination; Model; selection (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (124)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4076(08)00109-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:146:y:2008:i:2:p:342-350
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().