Econometric estimation in long-range dependent volatility models: Theory and practice
Isabel Casas () and
Jiti Gao
Journal of Econometrics, 2008, vol. 147, issue 1, 72-83
Abstract:
It is commonly accepted that some financial data may exhibit long-range dependence, while other financial data exhibit intermediate-range dependence or short-range dependence. These behaviours may be fitted to a continuous-time fractional stochastic model. The estimation procedure proposed in this paper is based on a continuous-time version of the Gauss-Whittle objective function to find the parameter estimates that minimize the discrepancy between the spectral density and the data periodogram. As a special case, the proposed estimation procedure is applied to a class of fractional stochastic volatility models to estimate the drift, standard deviation and memory parameters of the volatility process under consideration. As an application, the volatility of the Dow Jones, S&P 500, CAC 40, DAX 30, FTSE 100 and NIKKEI 225 is estimated.
Keywords: Continuous-time; model; Diffusion; process; Long-range; dependence; Stochastic; volatility (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4076(08)00125-5
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Econometric estimation in long-range dependent volatility models: Theory and practice (2007) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:147:y:2008:i:1:p:72-83
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().