Estimation of continuous-time stochastic volatility models with jumps using high-frequency data
Viktor Todorov
Journal of Econometrics, 2009, vol. 148, issue 2, 131-148
Abstract:
This paper proposes a method of inference for general stochastic volatility models containing price jumps. The estimation is based on treating realized multipower variation statistics calculated from high-frequency data as their unobservable (fill-in) asymptotic limits. The paper provides easy-to-check conditions under which the error in estimation resulting from this approximation is op(1) and additional ones under which it is , where T is the number of days in the sample. Extensive Monte Carlo analysis shows that the proposed estimation method works well in finite samples, provided asymptotic approximations are used. The estimation technique is applied to the estimation of two semiparametric models.
Keywords: Continuous-time; stochastic; volatility; models; Jump; processes; Method-of-moments; estimation; Realized; multipower; variation (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (55)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4076(08)00181-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:148:y:2009:i:2:p:131-148
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().