Edgeworth expansions and normalizing transforms for inequality measures
Christian Schluter and
Kees Jan van Garderen
Journal of Econometrics, 2009, vol. 150, issue 1, 16-29
Abstract:
Finite sample distributions of studentized inequality measures differ substantially from their asymptotic normal distribution in terms of location and skewness. We study these aspects formally by deriving the second-order expansion of the first and third cumulant of the studentized inequality measure. We state distribution-free expressions for the bias and skewness coefficients. In the second part we improve over first-order theory by deriving Edgeworth expansions and normalizing transforms. These normalizing transforms are designed to eliminate the second-order term in the distributional expansion of the studentized transform and converge to the Gaussian limit at rate O(n-1). This leads to improved confidence intervals and applying a subsequent bootstrap leads to a further improvement to order O(n-3/2). We illustrate our procedure with an application to regional inequality measurement in Côte d'Ivoire.
Keywords: Generalized; Entropy; inequality; measures; Higher-; order; expansions; Normalizing; transformations (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4076(09)00029-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:150:y:2009:i:1:p:16-29
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().