EconPapers    
Economics at your fingertips  
 

Exact and asymptotic tests for possibly non-regular hypotheses on stochastic volatility models

Jean-Marie Dufour () and Pascale Valéry

Journal of Econometrics, 2009, vol. 150, issue 2, 193-206

Abstract: We study the problem of testing hypotheses on the parameters of one- and two-factor stochastic volatility models (SV), allowing for the possible presence of non-regularities such as singular moment conditions and unidentified parameters, which can lead to non-standard asymptotic distributions. We focus on the development of simulation-based exact procedures-whose level can be controlled in finite samples-as well as on large-sample procedures which remain valid under non-regular conditions. We consider Wald-type, score-type and likelihood-ratio-type tests based on a simple moment estimator, which can be easily simulated. We also propose a C([alpha])-type test which is very easy to implement and exhibits relatively good size and power properties. Besides usual linear restrictions on the SV model coefficients, the problems studied include testing homoskedasticity against a SV alternative (which involves singular moment conditions under the null hypothesis) and testing the null hypothesis of one factor driving the dynamics of the volatility process against two factors (which raises identification difficulties). Three ways of implementing the tests based on alternative statistics are compared: asymptotic critical values (when available), a local Monte Carlo (or parametric bootstrap) test procedure, and a maximized Monte Carlo (MMC) procedure. The size and power properties of the proposed tests are examined in a simulation experiment. The results indicate that the C([alpha])-based tests (built upon the simple moment estimator available in closed form) have good size and power properties for regular hypotheses, while Monte Carlo tests are much more reliable than those based on asymptotic critical values. Further, in cases where the parametric bootstrap appears to fail (for example, in the presence of identification problems), the MMC procedure easily controls the level of the tests. Moreover, MMC-based tests exhibit relatively good power performance despite the conservative feature of the procedure. Finally, we present an application to a time series of returns on the Standard and Poor's Composite Price Index.

Keywords: Testing; Exact; test; Monte; Carlo; test; Maximized; Monte; Carlo; test; Wald; test; LR; test; LM; test; C([alpha]); test; Homoskedasticity; Stochastic; volatility; Two-factor; volatility; Identification; Singular; moment; conditions; Finance; Stock; prices (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4076(08)00218-2
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:150:y:2009:i:2:p:193-206

Access Statistics for this article

Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson

More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:econom:v:150:y:2009:i:2:p:193-206