EconPapers    
Economics at your fingertips  
 

Estimators of long-memory: Fourier versus wavelets

Gilles Faÿ, Eric Moulines, François Roueff and Murad S. Taqqu

Journal of Econometrics, 2009, vol. 151, issue 2, 159-177

Abstract: Semi-parametric estimation methods of the long-memory exponent of a time series have been studied in several papers, some applied, others theoretical, some using Fourier methods, others using a wavelet-based technique. In this paper, we compare the Fourier and wavelet approaches to the local regression method and to the local Whittle method. We provide an overview of these methods, describe what has been done and indicate the available results and the conditions under which they hold. We discuss their relative strengths and weaknesses both from a practical and a theoretical perspective. We also include a simulation-based comparison. The software written to support this work is available on demand and we illustrate its use at the end of the paper.

Keywords: Wavelet; analysis; Long; range; dependence; Semi-parametric; estimation (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (36)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4076(09)00080-3
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:151:y:2009:i:2:p:159-177

Access Statistics for this article

Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson

More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:econom:v:151:y:2009:i:2:p:159-177