A Wald test for the cointegration rank in nonstationary fractional systems
Marco Avarucci () and
Carlos Velasco
Journal of Econometrics, 2009, vol. 151, issue 2, 178-189
Abstract:
This paper develops new methods for determining the cointegration rank in a nonstationary fractionally integrated system, extending univariate optimal methods for testing the degree of integration. We propose a simple Wald test based on the singular value decomposition of the unrestricted estimate of the long run multiplier matrix. When the "strength" of the cointegrating relationship is less than 1/2, the test statistic has a standard asymptotic distribution, like Lagrange Multiplier tests exploiting local properties. We consider the behavior of our test under estimation of short run parameters and local alternatives. We compare our procedure with other cointegration tests based on different principles and find that the new method has better properties in a range of situations by using information on the alternative obtained through a preliminary estimate of the cointegration strength.
Keywords: Fractional; integration; Fractional; error; correction; model; Singular; value; decomposition; Cointegration; test (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4076(09)00081-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:151:y:2009:i:2:p:178-189
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().