Parametric links for binary choice models: A Fisherian-Bayesian colloquy
Roger Koenker and
Jungmo Yoon
Journal of Econometrics, 2009, vol. 152, issue 2, 120-130
Abstract:
The familiar logit and probit models provide convenient settings for many binary response applications, but a larger class of link functions may be occasionally desirable. Two parametric families of link functions are investigated: the Gosset link based on the Student t latent variable model with the degrees of freedom parameter controlling the tail behavior, and the Pregibon link based on the (generalized) Tukey [lambda] family, with two shape parameters controlling skewness and tail behavior. Both Bayesian and maximum likelihood methods for estimation and inference are explored, compared and contrasted. In applications, like the propensity score matching problem discussed below, where it is critical to have accurate estimates of the conditional probabilities, we find that misspecification of the link function can create serious bias. Bayesian point estimation via MCMC performs quite competitively with MLE methods; however nominal coverage of Bayes credible regions is somewhat more problematic.
Keywords: Binary; response; model; Link; function; Cauchit; Markov; chain; Monte-Carlo (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (45)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4076(09)00020-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:152:y:2009:i:2:p:120-130
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().