Unit root quantile autoregression testing using covariates
Antonio Galvao
Journal of Econometrics, 2009, vol. 152, issue 2, 165-178
Abstract:
This paper extends unit root tests based on quantile regression proposed by Koenker and Xiao [Koenker, R., Xiao, Z., 2004. Unit root quantile autoregression inference, Journal of the American Statistical Association 99, 775-787] to allow stationary covariates and a linear time trend. The limiting distribution of the test is a convex combination of Dickey-Fuller and standard normal distributions, with weight determined by the correlation between the equation error and the regression covariates. A simulation experiment is described, illustrating the finite sample performance of the unit root test for several types of distributions. The test based on quantile autoregression turns out to be especially advantageous when innovations are heavy-tailed. An application to the CPI-based real exchange rates using four different countries suggests that real exchange rates are not constant unit root processes.
Keywords: Unit; root; Quantile; Covariates; Linear; time; trend (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (94)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4076(09)00016-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:152:y:2009:i:2:p:165-178
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().