Finite sample inference for quantile regression models
Victor Chernozhukov,
Christian Hansen and
Michael Jansson
Journal of Econometrics, 2009, vol. 152, issue 2, 93-103
Abstract:
Under minimal assumptions, finite sample confidence bands for quantile regression models can be constructed. These confidence bands are based on the "conditional pivotal property" of estimating equations that quantile regression methods solve and provide valid finite sample inference for linear and nonlinear quantile models with endogenous or exogenous covariates. The confidence regions can be computed using Markov Chain Monte Carlo (MCMC) methods. We illustrate the finite sample procedure through two empirical examples: estimating a heterogeneous demand elasticity and estimating heterogeneous returns to schooling. We find pronounced differences between asymptotic and finite sample confidence regions in cases where the usual asymptotics are suspect.
Keywords: Extremal; quantile; regression; Instrumental; quantile; regression; Partial; identification; Weak; identification (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (49)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4076(09)00022-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:152:y:2009:i:2:p:93-103
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().