On the effect of mean-nonstationarity in dynamic panel data models
Kazuhiko Hayakawa
Journal of Econometrics, 2009, vol. 153, issue 2, 133-135
Abstract:
In this paper, we investigate the effect of mean-nonstationarity on the first-difference generalized method of moments (FD-GMM) estimator in dynamic panel data models. We find that when data is mean-nonstationary and the variance of individual effects is significantly larger than that of disturbances, the FD-GMM estimator performs quite well. We demonstrate that this is because the correlation between the lagged dependent variable and instruments gets larger owing to the unremoved individual effects, i.e., instruments become strong. This implies that, under mean-nonstationarity, the FD-GMM estimator does not always suffer from the weak instruments problem even when data is persistent.
Keywords: Dynamic; panel; data; models; Strength; of; instruments; Generalized; method; of; moments; estimator; Mean-nonstationarity (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4076(09)00128-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:153:y:2009:i:2:p:133-135
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().