EconPapers    
Economics at your fingertips  
 

An integrated maximum score estimator for a generalized censored quantile regression model

Songnian Chen

Journal of Econometrics, 2010, vol. 155, issue 1, 90-98

Abstract: Quantile regression techniques have been widely used in empirical economics. In this paper, we consider the estimation of a generalized quantile regression model when data are subject to fixed or random censoring. Through a discretization technique, we transform the censored regression model into a sequence of binary choice models and further propose an integrated smoothed maximum score estimator by combining individual binary choice models, following the insights of Horowitz (1992) and Manski (1985). Unlike the estimators of Horowitz (1992) and Manski (1985), our estimators converge at the usual parametric rate through an integration process. In the case of fixed censoring, our approach overcomes a major drawback of existing approaches associated with the curse-of-dimensionality problem. Our approach for the fixed censored case can be extended readily to the case with random censoring for which other existing approaches are no longer applicable. Both of our estimators are consistent and asymptotically normal. A simulation study demonstrates that our estimators perform well in finite samples.

Keywords: Quantile; regression; Transformation; models; Dimension; reduction (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4076(09)00232-2
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:155:y:2010:i:1:p:90-98

Access Statistics for this article

Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson

More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:econom:v:155:y:2010:i:1:p:90-98