The dynamic invariant multinomial probit model: Identification, pretesting and estimation
Roman Liesenfeld and
Jean-Francois Richard
Journal of Econometrics, 2010, vol. 155, issue 2, 117-127
Abstract:
We present a new specification for the multinomial multiperiod probit model with autocorrelated errors. In sharp contrast with commonly used specifications, ours is invariant with respect to the choice of a baseline alternative for utility differencing. It also nests these standard models as special cases, allowing for data-based selection of the baseline alternatives for the latter. Likelihood evaluation is achieved under an Efficient Importance Sampling (EIS) version of the standard GHK algorithm. Several simulation experiments highlight identification, estimation and pretesting within the new class of multinomial multiperiod probit models.
Keywords: Discrete; choice; Efficient; Importance; Sampling; Invariance; Monte; Carlo; integration; Panel; data; Simulated; maximum; likelihood (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4076(09)00234-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:155:y:2010:i:2:p:117-127
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().