Efficient semiparametric estimation of multi-valued treatment effects under ignorability
Matias Cattaneo
Journal of Econometrics, 2010, vol. 155, issue 2, 138-154
Abstract:
This paper studies the efficient estimation of a large class of multi-valued treatment effects as implicitly defined by a collection of possibly over-identified non-smooth moment conditions when the treatment assignment is assumed to be ignorable. Two estimators are introduced together with a set of sufficient conditions that ensure their -consistency, asymptotic normality and efficiency. Under mild assumptions, these conditions are satisfied for the Marginal Mean Treatment Effect and the Marginal Quantile Treatment Effect, estimands of particular importance for empirical applications. Previous results for average and quantile treatments effects are encompassed by the methods proposed here when the treatment is dichotomous. The results are illustrated by an empirical application studying the effect of maternal smoking intensity during pregnancy on birth weight, and a Monte Carlo experiment.
Keywords: Multi-valued; treatment; effects; Unconfoundedness; Semiparametric; efficiency; Efficient; estimation (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (281)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4076(09)00236-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:155:y:2010:i:2:p:138-154
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().