Efficient estimation of probit models with correlated errors
Roman Liesenfeld and
Jean-Francois Richard
Journal of Econometrics, 2010, vol. 156, issue 2, 367-376
Abstract:
Maximum Likelihood (ML) estimation of probit models with correlated errors typically requires high-dimensional truncated integration. Prominent examples of such models are multinomial probit models and binomial panel probit models with serially correlated errors. In this paper we propose to use a generic procedure known as Efficient Importance Sampling (EIS) for the evaluation of likelihood functions for probit models with correlated errors. Our proposed EIS algorithm covers the standard GHK probability simulator as a special case. We perform a set of Monte Carlo experiments in order to illustrate the relative performance of both procedures for the estimation of a multinomial multiperiod probit model. Our results indicate substantial numerical efficiency gains for ML estimates based on the GHK-EIS procedure relative to those obtained by using the GHK procedure.
Keywords: Discrete; choice; Importance; sampling; Monte; Carlo; integration; Panel; data; Simulated; maximum; likelihood (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4076(09)00295-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:156:y:2010:i:2:p:367-376
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().