Indirect inference for dynamic panel models
Christian Gourieroux,
Peter Phillips and
Jun Yu
Journal of Econometrics, 2010, vol. 157, issue 1, 68-77
Abstract:
Maximum likelihood (ML) estimation of the autoregressive parameter of a dynamic panel data model with fixed effects is inconsistent under fixed time series sample size and large cross section sample size asymptotics. This paper proposes a general, computationally inexpensive method of bias reduction that is based on indirect inference, shows unbiasedness and analyzes efficiency. Monte Carlo studies show that our procedure achieves substantial bias reductions with only mild increases in variance, thereby substantially reducing root mean square errors. The method is compared with certain consistent estimators and is shown to have superior finite sample properties to the generalized method of moment (GMM) and the bias-corrected ML estimator.
Keywords: Autoregression; Bias; reduction; Dynamic; panel; Fixed; effects; Indirect; inference (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (77)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4076(09)00277-2
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Indirect Inference for Dynamic Panel Models (2006) 
Working Paper: Indirect Inference for Dynamic Panel Models (2006) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:157:y:2010:i:1:p:68-77
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().