Robust methods for detecting multiple level breaks in autocorrelated time series
David Harvey,
Stephen Leybourne () and
Robert Taylor
Journal of Econometrics, 2010, vol. 157, issue 2, 342-358
Abstract:
In this paper we propose tests for the null hypothesis that a time series process displays a constant level against the alternative that it displays (possibly) multiple changes in level. Our proposed tests are based on functions of appropriately standardized sequences of the differences between sub-sample mean estimates from the series under investigation. The tests we propose differ notably from extant tests for level breaks in the literature in that they are designed to be robust as to whether the process admits an autoregressive unit root (the data are I(1)) or stable autoregressive roots (the data are I(0)). We derive the asymptotic null distributions of our proposed tests, along with representations for their asymptotic local power functions against Pitman drift alternatives under both I(0) and I(1) environments. Associated estimators of the level break fractions are also discussed. We initially outline our procedure through the case of non-trending series, but our analysis is subsequently extended to allow for series which display an underlying linear trend, in addition to possible level breaks. Monte Carlo simulation results are presented which suggest that the proposed tests perform well in small samples, showing good size control under the null, regardless of the order of integration of the data, and displaying very decent power when level breaks occur.
Keywords: Level; breaks; Unit; root; Moving; means; Long; run; variance; estimation; Robust; tests; Breakpoint; estimation (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (35)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4076(10)00042-4
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Robust methods for detecting multiple level breaks in autocorrelated time series (2011) 
Working Paper: Robust methods for detecting multiple level breaks in autocorrelated time series (2010) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:157:y:2010:i:2:p:342-358
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().