The LIML estimator has finite moments!
T.W. Anderson
Journal of Econometrics, 2010, vol. 157, issue 2, 359-361
Abstract:
The Limited Information Maximum Likelihood estimator of the vector of coefficients of a structural equation in a simultaneous equation model is the vector that defines the linear combination maximizing the effect variance relative to the error variance. If this "eigenvector" solution is normalized by setting a designated coefficient equal to 1, the second-order moment of the estimator may be unbounded. However, the second-order moment is finite if the normalization sets the sample error variance of the linear combination equal to 1.
Keywords: Limited; Information; Maximum; Likelihood; Bounded; moments; Normalization (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4076(10)00080-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:157:y:2010:i:2:p:359-361
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().