EconPapers    
Economics at your fingertips  
 

Bayesian non-parametric signal extraction for Gaussian time series

Christian Macaro

Journal of Econometrics, 2010, vol. 157, issue 2, 381-395

Abstract: We consider the problem of unobserved components in time series from a Bayesian non-parametric perspective. The identification conditions are treated as unknown and analyzed in a probabilistic framework. In particular, informative prior distributions force the spectral decomposition to be in an identifiable region. Then, the likelihood function adapts the prior decompositions to the data. A full Bayesian analysis of unobserved components will be presented for financial high frequency data. Particularly, a three component model (long-term, intra-daily and short-term) will be analyzed to emphasize the importance and the potential of this work when dealing with the Value-at-Risk analysis. A second astronomical application will show how to deal with multiple periodicities.

Keywords: Unobserved; components; Spectral; representation; Identification; conditions (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4076(10)00084-9
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:157:y:2010:i:2:p:381-395

Access Statistics for this article

Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson

More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:econom:v:157:y:2010:i:2:p:381-395