Structural measurement errors in nonseparable models
Stefan Hoderlein and
Joachim Winter ()
Journal of Econometrics, 2010, vol. 157, issue 2, 432-440
Abstract:
This paper considers measurement error from a new perspective. In surveys, response errors are often caused by the fact that respondents recall past events and quantities imperfectly. We explore the consequences of limited recall for the identification of marginal effects. Our identification approach is entirely nonparametric, using Matzkin-type nonseparable models that nest a large class of potential structural models. We show that measurement error due to limited recall will generally exhibit nonstandard behavior, in particular be nonclassical and differential, even for left-hand side variables in linear models. We establish that information reduction by individuals is the critical issue for the severity of recall measurement error. In order to detect information reduction, we propose a nonparametric test statistic. Finally, we propose bounds to address identification problems resulting from recall errors. We illustrate our theoretical findings using real-world data on food consumption.
Keywords: Measurement; error; Nonparametric; Survey; design; Nonseparable; model; Identification; Zero; homogeneity; Demand (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4076(10)00096-5
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Structural measurement errors in nonseparable models (2010)
Working Paper: Structural Measurement Errors in Nonseparable Models (2009) 
Working Paper: Structural Measurement Errors in Nonseparable Models (2009) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:157:y:2010:i:2:p:432-440
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().