Averaging estimators for autoregressions with a near unit root
Bruce Hansen ()
Journal of Econometrics, 2010, vol. 158, issue 1, 142-155
Abstract:
This paper uses local-to-unity theory to evaluate the asymptotic mean-squared error (AMSE) and forecast expected squared error from least-squares estimation of an autoregressive model with a root close to unity. We investigate unconstrained estimation, estimation imposing the unit root constraint, pre-test estimation, model selection estimation, and model average estimation. We find that the asymptotic risk depends only on the local-to-unity parameter, facilitating simple graphical comparisons. Our results strongly caution against pre-testing. Strong evidence supports averaging based on Mallows weights. In particular, our Mallows averaging method has uniformly and substantially smaller risk than the conventional unconstrained estimator, and this holds for autoregressive roots far from unity. Our averaging estimator is a new approach to forecast combination.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4076(10)00064-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:158:y:2010:i:1:p:142-155
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().