Quasi-maximum likelihood estimation of volatility with high frequency data
Dacheng Xiu
Journal of Econometrics, 2010, vol. 159, issue 1, 235-250
Abstract:
This paper investigates the properties of the well-known maximum likelihood estimator in the presence of stochastic volatility and market microstructure noise, by extending the classic asymptotic results of quasi-maximum likelihood estimation. When trying to estimate the integrated volatility and the variance of noise, this parametric approach remains consistent, efficient and robust as a quasi-estimator under misspecified assumptions. Moreover, it shares the model-free feature with nonparametric alternatives, for instance realized kernels, while being advantageous over them in terms of finite sample performance. In light of quadratic representation, this estimator behaves like an iterative exponential realized kernel asymptotically. Comparisons with a variety of implementations of the Tukey-Hanning2 kernel are provided using Monte Carlo simulations, and an empirical study with the Euro/US Dollar future illustrates its application in practice.
Keywords: Integrated; volatility; Market; microstructure; noise; Quasi-maximum; likelihood; estimator; Realized; kernels; Stochastic; volatility (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (137)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4076(10)00145-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:159:y:2010:i:1:p:235-250
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().