EconPapers    
Economics at your fingertips  
 

A martingale approach for testing diffusion models based on infinitesimal operator

Zhaogang Song

Journal of Econometrics, 2011, vol. 162, issue 2, 189-212

Abstract: I develop an omnibus specification test for diffusion models based on the infinitesimal operator. The infinitesimal operator based identification of the diffusion process is equivalent to a "martingale hypothesis" for the processes obtained by a transformation of the original diffusion model. My test procedure is then constructed by checking the "martingale hypothesis" via a multivariate generalized spectral derivative based approach that delivers a N(0,1) asymptotical null distribution for the test statistic. The infinitesimal operator of the diffusion process is a closed-form function of drift and diffusion terms. Consequently, my test procedure covers both univariate and multivariate diffusion models in a unified framework and is particularly convenient for the multivariate case. Moreover, different transformed martingale processes contain separate information about the drift and diffusion specifications. This motivates me to propose a separate inferential test procedure to explore the sources of rejection when a parametric form is rejected. Simulation studies show that the proposed tests have reasonable size and excellent power performance. An empirical application of my test procedure using Eurodollar interest rates finds that most popular short-rate models are rejected and the drift misspecification plays an important role in such rejections.

Keywords: Diffusion; Markov; Martingale; problem; Semi-group; Infinitesimal; operator (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4076(10)00247-2
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:162:y:2011:i:2:p:189-212

Access Statistics for this article

Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson

More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-31
Handle: RePEc:eee:econom:v:162:y:2011:i:2:p:189-212