A new class of asymptotically efficient estimators for moment condition models
Yanqin Fan,
Matthew Gentry and
Tong Li
Journal of Econometrics, 2011, vol. 162, issue 2, 268-277
Abstract:
In this paper, we propose a new class of asymptotically efficient estimators for moment condition models. These estimators share the same higher order bias properties as the generalized empirical likelihood estimators and once bias corrected, have the same higher order efficiency properties as the bias corrected generalized empirical likelihood estimators. Unlike the generalized empirical likelihood estimators, our new estimators are much easier to compute. A simulation study finds that our estimators have better finite sample performance than the two-step GMM, and compare well to several potential alternatives in terms of both computational stability and overall performance.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4076(11)00027-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:162:y:2011:i:2:p:268-277
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().