Variable selection, estimation and inference for multi-period forecasting problems
Mohammad Pesaran,
Andreas Pick and
Allan Timmermann
Journal of Econometrics, 2011, vol. 164, issue 1, 173-187
Abstract:
This paper conducts a broad-based comparison of iterated and direct multi-period forecasting approaches applied to both univariate and multivariate models in the form of parsimonious factor-augmented vector autoregressions. To account for serial correlation in the residuals of the multi-period direct forecasting models we propose a new SURE-based estimation method and modified Akaike information criteria for model selection. Empirical analysis of the 170 variables studied by Marcellino, Stock and Watson (2006) shows that information in factors helps improve forecasting performance for most types of economic variables although it can also lead to larger biases. It also shows that SURE estimation and finite-sample modifications to the Akaike information criterion can improve the performance of the direct multi-period forecasts.
Keywords: Direct; forecasts; Iterated; forecasts; Factor-; augmented; VARs; SURE; estimation; Akaike; information; criterion (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (69)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407611000467
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:164:y:2011:i:1:p:173-187
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().