Testing and detecting jumps based on a discretely observed process
Yingying Fan and
Jianqing Fan
Journal of Econometrics, 2011, vol. 164, issue 2, 331-344
Abstract:
We propose a new nonparametric test for detecting the presence of jumps in asset prices using discretely observed data. Compared with the test in Aït-Sahalia and Jacod (2009), our new test enjoys the same asymptotic properties but has smaller variance. These results are justified both theoretically and numerically. We also propose a new procedure to locate the jumps. The jump identification problem reduces to a multiple comparison problem. We employ the false discovery rate approach to control the probability of type I error. Numerical studies further demonstrate the power of our new method.
Keywords: Jump; diffusion; process; Test; for; jumps; High; frequency; Stable; convergence; False; discovery; rate (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407611001278
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:164:y:2011:i:2:p:331-344
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().