Bayesian inference in a sample selection model
Martijn van Hasselt
Journal of Econometrics, 2011, vol. 165, issue 2, 221-232
Abstract:
This paper develops methods of Bayesian inference in a sample selection model. The main feature of this model is that the outcome variable is only partially observed. We first present a Gibbs sampling algorithm for a model in which the selection and outcome errors are normally distributed. The algorithm is then extended to analyze models that are characterized by nonnormality. Specifically, we use a Dirichlet process prior and model the distribution of the unobservables as a mixture of normal distributions with a random number of components. The posterior distribution in this model can simultaneously detect the presence of selection effects and departures from normality. Our methods are illustrated using some simulated data and an abstract from the RAND health insurance experiment.
Keywords: Sample selection; Gibbs sampling; Mixture distributions; Dirichlet process (search for similar items in EconPapers)
JEL-codes: C11 C14 C15 C34 (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407611001618
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:165:y:2011:i:2:p:221-232
DOI: 10.1016/j.jeconom.2011.08.003
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().