Functional data analysis for volatility
Hans-Georg Müller,
Rituparna Sen and
Ulrich Stadtmüller
Journal of Econometrics, 2011, vol. 165, issue 2, 233-245
Abstract:
We introduce a functional volatility process for modeling volatility trajectories for high frequency observations in financial markets and describe functional representations and data-based recovery of the process from repeated observations. A study of its asymptotic properties, as the frequency of observed trades increases, is complemented by simulations and an application to the analysis of intra-day volatility patterns of the S&P 500 index. The proposed volatility model is found to be useful to identify recurring patterns of volatility and for successful prediction of future volatility, through the application of functional regression and prediction techniques.
Keywords: Diffusion model; Functional principal component; Functional regression; High frequency trading; Market returns; Prediction; Volatility process; Trajectories of volatility (search for similar items in EconPapers)
JEL-codes: C14 C51 C52 G12 G17 (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407611001606
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:165:y:2011:i:2:p:233-245
DOI: 10.1016/j.jeconom.2011.08.002
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().