Semiparametric estimation of a bivariate Tobit model
Songnian Chen and
Xianbo Zhou
Journal of Econometrics, 2011, vol. 165, issue 2, 266-274
Abstract:
The existing semiparametric estimation literature has mainly focused on univariate Tobit models and no semiparametric estimation has been considered for bivariate Tobit models. In this paper, we consider semiparametric estimation of the bivariate Tobit model proposed by Amemiya (1974), under the independence condition without imposing any parametric restriction on the error distribution. Our estimator is shown to be consistent and asymptotically normal, and simulation results show that our estimator performs well in finite samples. It is also worth noting that while Amemiya’s (1974) instrumental variables estimator (IV) requires the normality assumption, our semiparametric estimator actually outperforms his IV estimator even when normality holds. Our approach can be extended to higher dimensional multivariate Tobit models.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407611001461
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:165:y:2011:i:2:p:266-274
DOI: 10.1016/j.jeconom.2011.07.005
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().