Nonparametric spatial regression under near-epoch dependence
Nazgul Jenish
Journal of Econometrics, 2012, vol. 167, issue 1, 224-239
Abstract:
This paper establishes asymptotic normality and uniform consistency with convergence rates of the local linear estimator for spatial near-epoch dependent (NED) processes. The class of the NED spatial processes covers important spatial processes, including nonlinear autoregressive and infinite moving average random fields, which generally do not satisfy mixing conditions. Apart from accommodating a larger class of dependent processes, the proposed asymptotic theory allows for triangular arrays of heterogeneous random fields located on unevenly spaced lattices and sampled over regions of arbitrary configuration. All these features make the results applicable in a wide range of empirical settings.
Keywords: Nonparametric regression; Local linear estimator; Near-epoch dependent spatial processes; Asymptotic normality (search for similar items in EconPapers)
JEL-codes: C13 C14 C21 (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407611002715
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:167:y:2012:i:1:p:224-239
DOI: 10.1016/j.jeconom.2011.11.008
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().