n-uniformly consistent density estimation in nonparametric regression models
Juan Carlos Escanciano and
David Jacho-Chávez
Journal of Econometrics, 2012, vol. 167, issue 2, 305-316
Abstract:
The paper introduces a n-consistent estimator of the probability density function of the response variable in a nonparametric regression model. The proposed estimator is shown to have a (uniform) asymptotic normal distribution, and it is computationally very simple to calculate. A Monte Carlo experiment confirms our theoretical results. The results derived in the paper adapt general U-processes theory to the inclusion of infinite dimensional nuisance parameters.
Keywords: Density estimation; Kernel smoothing; U-processes (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407611001989
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:167:y:2012:i:2:p:305-316
DOI: 10.1016/j.jeconom.2011.09.017
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().