Optimal estimation under nonstandard conditions
Werner Ploberger and
Peter Phillips
Journal of Econometrics, 2012, vol. 169, issue 2, 258-265
Abstract:
We analyze optimality properties of maximum likelihood (ML) and other estimators when the problem does not necessarily fall within the locally asymptotically normal (LAN) class, therefore covering cases that are excluded from conventional LAN theory such as unit root nonstationary time series. The classical Hájek–Le Cam optimality theory is adapted to cover this situation. We show that the expectation of certain monotone “bowl-shaped” functions of the squared estimation error are minimized by the ML estimator in locally asymptotically quadratic situations, which often occur in nonstationary time series analysis when the LAN property fails. Moreover, we demonstrate a direct connection between the (Bayesian property of) asymptotic normality of the posterior and the classical optimality properties of ML estimators.
Keywords: Bayesian asymptotics; Asymptotic normality; Local asymptotic normality; Locally asymptotic quadratic; Optimality property of MLE; Weak convergence (search for similar items in EconPapers)
JEL-codes: C22 (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407612000358
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Optimal Estimation under Nonstandard Conditions (2010) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:169:y:2012:i:2:p:258-265
DOI: 10.1016/j.jeconom.2012.01.025
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().