Kernel-weighted GMM estimators for linear time series models
Guido Kuersteiner
Journal of Econometrics, 2012, vol. 170, issue 2, 399-421
Abstract:
This paper analyzes the higher-order asymptotic properties of generalized method of moments (GMM) estimators for linear time series models using many lags as instruments. A data-dependent moment selection method based on minimizing the approximate mean squared error is developed. In addition, a new version of the GMM estimator based on kernel-weighted moment conditions is proposed. It is shown that kernel-weighted GMM estimators can reduce the asymptotic bias compared to standard GMM estimators. Kernel weighting also helps to simplify the problem of selecting the optimal number of instruments. A feasible procedure similar to optimal bandwidth selection is proposed for the kernel-weighted GMM estimator.
Keywords: Time series; Feasible GMM; Number of instruments; Kernel weights; Higher-order MSE; Bias reduction (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030440761200125X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:170:y:2012:i:2:p:399-421
DOI: 10.1016/j.jeconom.2012.05.013
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().