Linear and nonlinear regression with stable errors
John P. Nolan and
Diana Ojeda-Revah
Journal of Econometrics, 2013, vol. 172, issue 2, 186-194
Abstract:
In this paper we describe methods and evaluate programs for linear regression by maximum likelihood when the errors have a heavy tailed stable distribution. The asymptotic Fisher information matrix for both the regression coefficients and the error distribution parameters are derived, giving large sample confidence intervals for all parameters. Simulated examples are shown where the errors are stably distributed and also where the errors are heavy tailed but are not stable, as well as a real example using financial data. The results are then extended to nonlinear models and to non-homogeneous error terms.
Keywords: Heavy tailed regression; Stable distributions; Score function (search for similar items in EconPapers)
JEL-codes: C13 C16 C51 G17 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407612001923
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:172:y:2013:i:2:p:186-194
DOI: 10.1016/j.jeconom.2012.08.008
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().