Heavy tails of OLS
Thomas Mikosch and
Casper de Vries
Journal of Econometrics, 2013, vol. 172, issue 2, 205-221
Abstract:
Suppose the tails of the noise distribution in a regression exhibit power law behavior. Then the distribution of the OLS regression estimator inherits this tail behavior. This is relevant for regressions involving financial data. We derive explicit finite sample expressions for the tail probabilities of the distribution of the OLS estimator. These are useful for inference. Simulations for medium sized samples reveal considerable deviations of the coefficient estimates from their true values, in line with our theoretical formulas. The formulas provide a benchmark for judging the observed highly variable cross country estimates of the expectations coefficient in yield curve regressions.
Keywords: Heavy tails; OLS estimator distribution; Small sample inference (search for similar items in EconPapers)
JEL-codes: C13 C16 C20 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407612001996
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:172:y:2013:i:2:p:205-221
DOI: 10.1016/j.jeconom.2012.08.015
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().