Model identification for infinite variance autoregressive processes
Beth Andrews and
Richard A. Davis
Journal of Econometrics, 2013, vol. 172, issue 2, 222-234
Abstract:
We consider model identification for infinite variance autoregressive time series processes. It is shown that a consistent estimate of autoregressive model order can be obtained by minimizing Akaike’s information criterion, and we use all-pass models to identify noncausal autoregressive processes and estimate the order of noncausality (the number of roots of the autoregressive polynomial inside the unit circle in the complex plane). We examine the performance of the order selection procedures for finite samples via simulation, and use the techniques to fit a noncausal autoregressive model to stock market trading volume data.
Keywords: Akaike’s information criterion; All-pass models; Autoregressive processes; Infinite variance; Noncausal (search for similar items in EconPapers)
JEL-codes: C13 C22 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407612001935
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:172:y:2013:i:2:p:222-234
DOI: 10.1016/j.jeconom.2012.08.009
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().