The method of simulated quantiles
Yves Dominicy and
David Veredas
Journal of Econometrics, 2013, vol. 172, issue 2, 235-247
Abstract:
We introduce the Method of Simulated Quantiles, or MSQ, an indirect inference method based on quantile matching that is useful for situations where the density function does not have a closed form and/or moments do not exist. Functions of theoretical quantiles, which depend on the parameters of the assumed probability law, are matched with the sample counterparts, which depend on the observations. Since the theoretical quantiles may not be available analytically, the optimization is based on simulations. We illustrate the method with the estimation of α-stable distributions. A thorough Monte Carlo study and an illustration to 22 financial indexes show the usefulness of MSQ.
Keywords: Quantiles; Simulation; Matching; Inference (search for similar items in EconPapers)
JEL-codes: C32 E44 G14 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407612001947
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:172:y:2013:i:2:p:235-247
DOI: 10.1016/j.jeconom.2012.08.010
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().