Evaluating treatment protocols using data combination
Debopam Bhattacharya
Journal of Econometrics, 2013, vol. 173, issue 2, 160-174
Abstract:
In real life, individuals are often assigned to binary treatments according to existing treatment protocols. Such protocols, when designed with “taste-based” motives, would be productively inefficient in that the expected returns to treatment for a marginal treatment recipient would vary across covariates and be larger for discriminated groups. This cannot be directly tested if assignment is based on more covariates than the researcher observes, because then the marginal treatment recipient is not identified. We present (i) a partial identification approach to detecting such inefficiency which is robust to selection on unobservables and (ii) a novel way of point-identifying the necessary counterfactual distributions by combining observational datasets with experimental estimates. These methods can also be used to (partially) infer risk-preferences which may rationalize the observed treatment allocations. Specifically, existing healthcare datasets can be analyzed with the proposed tools to test the allocational efficiency of medical treatments. Using our methodology on data from the Coronary Artery Surgery Study in the US, which combined experimental and observational components, we find that after controlling for age, smokers in the observational dataset had to overcome a higher threshold of expected survival relative to nonsmokers in order to qualify for surgery.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407612002497
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Evaluating Treatment Protocols using Data Combination (2012) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:173:y:2013:i:2:p:160-174
DOI: 10.1016/j.jeconom.2012.11.003
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().