Testing for a break in trend when the order of integration is unknown
Fabrizio Iacone,
Stephen Leybourne () and
Robert Taylor
Journal of Econometrics, 2013, vol. 176, issue 1, 30-45
Abstract:
Harvey, Leybourne and Taylor [Harvey, D.I., Leybourne, S.J., Taylor, A.M.R. 2009. Simple, robust and powerful tests of the breaking trend hypothesis. Econometric Theory 25, 995–1029] develop a test for the presence of a broken linear trend at an unknown point in the sample whose size is asymptotically robust as to whether the (unknown) order of integration of the data is either zero or one. This test is not size controlled, however, when this order assumes fractional values; its asymptotic size can be either zero or one in such cases. In this paper we suggest a new test, based on a sup-Wald statistic, which is asymptotically size-robust across fractional values of the order of integration (including zero or one). We examine the asymptotic power of the test under a local trend break alternative. The finite sample properties of the test are also investigated.
Keywords: Trend break; Fractional integration; Sup-Wald statistic (search for similar items in EconPapers)
JEL-codes: C22 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407613000663
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:176:y:2013:i:1:p:30-45
DOI: 10.1016/j.jeconom.2013.03.008
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().