Binary choice models with discrete regressors: Identification and misspecification
Tatiana Komarova
Journal of Econometrics, 2013, vol. 177, issue 1, 14-33
Abstract:
This paper explores the inferential question in semiparametric binary response models when the continuous support condition is not satisfied and all regressors have discrete support. I focus mainly on the models under the conditional median restriction, as in Manski (1985). I find sharp bounds on the components of the parameter of interest and outline several applications. The formulas for bounds obtained using a recursive procedure help analyze cases where one regressor’s support becomes increasingly dense. Furthermore, I investigate asymptotic properties of estimators of the identification set. I describe a relation between the maximum score estimation and support vector machines and propose several approaches to address the problem of empty identification sets when the model is misspecified.
Keywords: Binary response models; Discrete regressors; Partial identification; Misspecification; Linear programming; Support vector machines (search for similar items in EconPapers)
JEL-codes: C10 C14 C2 C25 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407613001279
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:177:y:2013:i:1:p:14-33
DOI: 10.1016/j.jeconom.2013.05.005
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().