Smooth minimum distance estimation and testing with conditional estimating equations: Uniform in bandwidth theory
Pascal Lavergne and
Valentin Patilea
Journal of Econometrics, 2013, vol. 177, issue 1, 47-59
Abstract:
To study the influence of a bandwidth parameter in inference with conditional moments, we propose a new class of estimators and establish an asymptotic representation of our estimator as a process indexed by a bandwidth, which can vary within a wide range including bandwidths independent of the sample size. We study its behavior under misspecification. We also propose an efficient version of our estimator. We develop a procedure based on a distance metric statistic for testing restrictions on parameters as well as a bootstrap technique to account for the bandwidth’s influence. Our new methods are simple to implement, apply to non-smooth problems, and perform well in our simulations.
Keywords: Semiparametric estimation; Conditional estimating equations; Smoothing methods; Asymptotic efficiency; Hypothesis testing; Bootstrap (search for similar items in EconPapers)
JEL-codes: C12 C14 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (29)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407613001280
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:177:y:2013:i:1:p:47-59
DOI: 10.1016/j.jeconom.2013.05.006
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().