EconPapers    
Economics at your fingertips  
 

Time-varying combinations of predictive densities using nonlinear filtering

Monica Billio, Roberto Casarin, Francesco Ravazzolo and Herman van Dijk

Journal of Econometrics, 2013, vol. 177, issue 2, 213-232

Abstract: We propose a Bayesian combination approach for multivariate predictive densities which relies upon a distributional state space representation of the combination weights. Several specifications of multivariate time-varying weights are introduced with a particular focus on weight dynamics driven by the past performance of the predictive densities and the use of learning mechanisms. In the proposed approach the model set can be incomplete, meaning that all models can be individually misspecified. A Sequential Monte Carlo method is proposed to approximate the filtering and predictive densities. The combination approach is assessed using statistical and utility-based performance measures for evaluating density forecasts of simulated data, US macroeconomic time series and surveys of stock market prices. Simulation results indicate that, for a set of linear autoregressive models, the combination strategy is successful in selecting, with probability close to one, the true model when the model set is complete and it is able to detect parameter instability when the model set includes the true model that has generated subsamples of data. Also, substantial uncertainty appears in the weights when predictors are similar; residual uncertainty reduces when the model set is complete; and learning reduces this uncertainty. For the macro series we find that incompleteness of the models is relatively large in the 1970’s, the beginning of the 1980’s and during the recent financial crisis, and lower during the Great Moderation; the predicted probabilities of recession accurately compare with the NBER business cycle dating; model weights have substantial uncertainty attached. With respect to returns of the S&P 500 series, we find that an investment strategy using a combination of predictions from professional forecasters and from a white noise model puts more weight on the white noise model in the beginning of the 1990’s and switches to giving more weight to the professional forecasts over time. Information on the complete predictive distribution and not just on some moments turns out to be very important, above all during turbulent times such as the recent financial crisis. More generally, the proposed distributional state space representation offers great flexibility in combining densities.

Keywords: Density forecast combination; Survey forecast; Bayesian filtering; Sequential Monte Carlo (search for similar items in EconPapers)
JEL-codes: C11 C15 C53 E37 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (109)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407613000869
Full text for ScienceDirect subscribers only

Related works:
Working Paper: Time-varying Combinations of Predictive Densities using Nonlinear Filtering (2012) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:177:y:2013:i:2:p:213-232

DOI: 10.1016/j.jeconom.2013.04.009

Access Statistics for this article

Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson

More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-24
Handle: RePEc:eee:econom:v:177:y:2013:i:2:p:213-232