A fast resample method for parametric and semiparametric models
Timothy Armstrong,
Marinho Bertanha and
Han Hong
Journal of Econometrics, 2014, vol. 179, issue 2, 128-133
Abstract:
We propose a fast resample method for two step nonlinear parametric and semiparametric models, which does not require recomputation of the second stage estimator during each resample iteration. The fast resample method directly exploits the score function representations computed on each bootstrap sample, thereby reducing computational time considerably. This method is used to approximate the limit distribution of parametric and semiparametric estimators, possibly simulation based, that admit an asymptotic linear representation. Monte Carlo experiments demonstrate the desirable performance and vast improvement in the numerical speed of the fast bootstrap method.
Keywords: Score function; Bootstrap; Subsampling; Nonlinear models (search for similar items in EconPapers)
JEL-codes: C12 C15 C22 C52 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407614000025
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:179:y:2014:i:2:p:128-133
DOI: 10.1016/j.jeconom.2014.01.001
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().