Maximum likelihood estimation of partially observed diffusion models
Tore Kleppe (),
Jun Yu and
Hans J. Skaug
Journal of Econometrics, 2014, vol. 180, issue 1, 73-80
Abstract:
This paper develops a maximum likelihood (ML) method to estimate partially observed diffusion models based on data sampled at discrete times. The method combines two techniques recently proposed in the literature in two separate steps. In the first step, the closed form approach of Aït-Sahalia (2008) is used to obtain a highly accurate approximation to the joint transition probability density of the latent and the observed states. In the second step, the efficient importance sampling technique of Richard and Zhang (2007) is used to integrate out the latent states, thereby yielding the likelihood function. Using both simulated and real data, we show that the proposed ML method works better than alternative methods. The new method does not require the underlying diffusion to have an affine structure and does not involve infill simulations. Therefore, the method has a wide range of applicability and its computational cost is moderate.
Keywords: Closed-form approximation; Diffusion model; Efficient importance sampler (search for similar items in EconPapers)
JEL-codes: C11 C15 G12 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407614000311
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:180:y:2014:i:1:p:73-80
DOI: 10.1016/j.jeconom.2014.02.002
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().