EconPapers    
Economics at your fingertips  
 

On the robustness of location estimators in models of firm growth under heavy-tailedness

Rustam Ibragimov

Journal of Econometrics, 2014, vol. 181, issue 1, 25-33

Abstract: Focusing on the model of demand-driven innovation and spatial competition over time in Jovanovic and Rob (1987), we study the effects of the robustness of estimators employed by firms to make inferences about their markets on the firms’ growth patterns. We show that if consumers’ signals in the model are moderately heavy-tailed and the firms use the sample mean of the signals to estimate the ideal product, then the firms’ output levels exhibit positive persistence. In such a setting, large firms have an advantage over their smaller counterparts. These properties are reversed for signals with extremely heavy-tailed distributions. In such a case, the model implies anti-persistence in output levels, together with a surprising pattern of oscillations in firm sizes, with smaller firms being likely to become larger ones next period, and vice versa. We further show that the implications of the model under moderate heavy-tailedness continue to hold under the only assumption of symmetry of consumers’ signals if the firms use a more robust estimator of the ideal product, the sample median.

Keywords: Robustness; Location estimators; Heavy-tailed distributions; Demand-driven innovation; Spatial competition; Firm growth; Signals; Investment; Information; Sample mean; Sample median; Majorization (search for similar items in EconPapers)
JEL-codes: C13 C22 D83 D92 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407614000347
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:181:y:2014:i:1:p:25-33

DOI: 10.1016/j.jeconom.2014.02.005

Access Statistics for this article

Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson

More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:econom:v:181:y:2014:i:1:p:25-33