Design-free estimation of variance matrices
Karim M. Abadir,
Walter Distaso and
Filip Žikeš
Journal of Econometrics, 2014, vol. 181, issue 2, 165-180
Abstract:
This paper introduces a new method for estimating variance matrices. Starting from the orthogonal decomposition of the sample variance matrix, we exploit the fact that orthogonal matrices are never ill-conditioned and therefore focus on improving the estimation of the eigenvalues. We estimate the eigenvectors from just a fraction of the data, then use them to transform the data into approximately orthogonal series that deliver a well-conditioned estimator (by construction), even when there are fewer observations than dimensions. We also show that our estimator has lower error norms than the traditional one. Our estimator is design-free: we make no assumptions on the distribution of the random sample or on any parametric structure the variance matrix may have. Simulations confirm our theoretical results and they also show that our simple estimator does very well in comparison with other existing methods.
Keywords: Variance matrices; Ill-conditioning; Mean squared error; Mean absolute deviations; Resampling; U-statistics (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407614000591
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:181:y:2014:i:2:p:165-180
DOI: 10.1016/j.jeconom.2014.03.010
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().