Testing conditional independence via empirical likelihood
Liangjun Su () and
Halbert White
Journal of Econometrics, 2014, vol. 182, issue 1, 27-44
Abstract:
We construct two classes of smoothed empirical likelihood ratio tests for the conditional independence hypothesis by writing the null hypothesis as an infinite collection of conditional moment restrictions indexed by a nuisance parameter. One class is based on the CDF; another is based on smoother functions. We show that the test statistics are asymptotically normal under the null hypothesis and a sequence of Pitman local alternatives. We also show that the tests possess an asymptotic optimality property in terms of average power. Simulations suggest that the tests are well behaved in finite samples. Applications to some economic and financial time series indicate that our tests reveal some interesting nonlinear causal relations which the traditional linear Granger causality test fails to detect.
Keywords: Conditional independence; Empirical likelihood; Granger causality; Local smoothed bootstrap; Nonlinear dependence; Nonparametric regression; U-statistics (search for similar items in EconPapers)
JEL-codes: C12 C14 C22 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407614000657
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Testing Conditional Independence Via Empirical Likelihood (2003) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:182:y:2014:i:1:p:27-44
DOI: 10.1016/j.jeconom.2014.04.006
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().